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The second-order density functional approach to the partitioning of the molecular density of Cedillo, Chattaraj,
and Parr (Int. J. Quantum Chem.2000, 77, 403-407) is used, together with a local assumption for the function
that projects the total density into its components, to show that the distribution function adopts a stockholders
form, in terms of the local softness of the isolated fragments, and that the molecular Fukui function is distributed
in the molecular fragments in the same proportion as the electronic density.

Introduction

The description of atoms or functional groups in molecules
has always been a desirable goal in chemistry. Knowledge of
how the atoms or the functional groups change, with respect to
their structure when they are isolated, due to the polarization
and charge transfer that occurs on bond formation, allows one
to understand different aspects of the chemical behavior of a
molecule or a family of molecules and how will they interact
with different reactants.

In this context, Bader and co-workers1 developed a theory
in which the molecular density is divided into nonoverlapping
regions separated by surfaces on which the flux of the density
gradient is zero. The atoms thus obtained have several important
properties. However, the absence of overlap between the atoms
could not be as adequate to describe the chemical bonds.

Parr and co-workers2-6 established a definition of atoms in
molecules by introducing the concept of promotion energy,
which is the change in the energy of each atom from its isolated
ground state to its state in the molecule. This way, by making
use of the chemical potential equalization principle and through
the minimization of the total promotion energy, one finds a
unique set of densities for the atoms in the molecule, whose
sum is equal to the molecular density, and that are not disjoint.
That is, this approach leads to fuzzy overlapping atoms.

Later, by taking into account that a fragment in a molecule
is an open system that can exchange energy and electrons with
the rest of the molecule, Cedillo, Chattaraj, and Parr7 defined a
partitioning of the molecular density, through the minimization
of the molecular grand potential with respect to the densities
of the fragments, subject to the constraint that they add up to
the molecular density.

Another definition of molecular fragments, proposed by
Hirshfeld,8 is based on the assumption that the molecular density
at each point may be divided among the fragments, in proportion
to their respective contributions to the promolecular density at
that point. The promolecular density is the sum of the isolated

fragment densities at the actual positions of the nuclei.
Thus

whereFi
H(r ) is the density of theith fragment in the molecule,

the superscript H indicates a Hirshfeld fragment,Fi
0(r ) is the

density of theith isolated fragment,Fm(r ) is the molecular
ground-state density

is the promolecular density, andwi
H(r ) ) {Fi

0(r )/Fpm
0 (r )} is the

Hirshfeld stockholders distribution function. The sum of all the
fragment densities,Fi

H(r ), is equal to the molecular ground-
state density,Fm(r ).

Recently, there has been a renewed interest in the Hirshfeld
stockholder partitioning, motivated by the important demonstra-
tions of the information-theoretic basis of this division
scheme9-15 and the thermodynamic-like properties of the
Hirshfeld subsystems.16 In addition, the Hirshfeld partitioning
has also been applied to calculate condensed Fukui functions,
leading to very reasonable values of these reactivity criteria that
have been used to explain several aspects about the chemical
behavior of a wide variety of chemical systems.17-22 However,
the calculation of the condensed Fukui functions, with the
Hirshfeld distribution function, implies the assumption of using
the distribution function that is employed in the neutral system
for the cases in which the molecule has a net positive or negative
charge. A situation that also implies that the molecular Fukui
function is distributed in the molecular fragments in the same
proportion as the electronic density. That is, through this
approximation one has thatwi

H(r ) ) {Fi
0(r )/Fpm

0 (r )} )
{Fi

H(r )/Fm(r )} ) {f i
H(r )/fm(r )}, wherefm(r ) ) ({∂Fm(r )/∂N})V

is the ground-state molecular Fukui function, andf i
H(r ) )

wi
H(r )fm(r ) such that∑if i

H(r ) ) fm(r ).
It is important to note that Ayers, Morrison, and Roy23 have

established a formal mathematical and physical basis for the
condensed Fukui functions, originally introduced by Yang and
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Mortier.24 In their derivations, it is implicitly assumed that the
existence of a single distribution function can be applied to
different local properties, such as the energy density, the
electronic density, or the Fukui function.

The purpose of the present work is to show that the molecular
partitioning of density functional theory based on the grand
potential leads to a distribution function of the stockholders type,
in terms of the local softness of the isolated fragments, from
which one can derive the relationship between the fragment
densities and the fragment Fukui functions.

Density Functional Theory Partitioning

The starting point of Cedillo, Chattaraj, and Parr7 is to
consider an isolatedN-electron molecule with densityFm(r ),
external potentialV(r ), and chemical potentialµ, formed by
fragments with the corresponding quantitiesNi, Fi(r ), Vi(r ), and
µi, in such a way that

with ∑iNi ) N. In the equilibrium ground state, the chemical
potential of each fragment,µi, is equal to the molecular chemical
potential,µ. The isolated fragments, in some reference state that
could be the ground state or a promoted state, are characterized
by the parametersNi

0, Fi
0(r ), Vi

0(r ), andµi
0.

Thus, they have shown that, if one performs the appropriate
Taylor series expansions and keeps only the terms up to second-
order derivatives of the energy, the change in grand potential
of each fragment may be expressed in the form

and the molecular grand potential is given by

In eq 4, ηi
0(r , r ′) is the hardness kernel25 for the isolated

fragment.
Cedillo, Chattaraj, and Parr have shown that the fragment

densities may be obtained through the minimization of eq 5
with respect to eachFi(r ), subject to the restriction given by eq
3. This procedure leads to7

where the functionwi(r , r ′) projects the total density into the
corresponding fragment component, and it is given by

where h(r ′′, r ′) is the inverse kernel of∑isi
0(r ′′, r ′), and

si
0(r ′′, r ′) is the softness kernel25 of the isolated fragment. The

summation over all fragments in eq 7 leads to∑iwi(r , r ′) )
δ(r - r ′), and therefore using this result in eq 6, one can see
that the sum of the fragment densities is equal to the molecular
density.

If we approximate the functionwi(r , r ′) by a local one,
wi(r , r ′) ) wi(r ′)δ(r - r ′), then, substituting this expression in
eq 7, one finds, after some algebraic manipulations, that

wheresi
0(r ) is the local softness of the isolated fragment, and

is the promolecular local softness. In the derivation of eq 8,
one makes use of the fact that the integral of the softness kernel
over one of the variables leads to the local softness.

Equation 8 establishes that the molecular density at each point
may be divided among the fragments, in proportion to their
respective contributions to the promolecular local softness at
that point. Thus, the comparison of eq 8 with eq 1 shows that
the density functional expression is similar to the Hirshfeld
expression, in the sense that it is of the stockholders type, but
in this case, the distribution is made through the local softness
of the isolated fragments instead of the density. It is important
to note that, in the present approach, eq 8 has been derived
without using stockholders arguments.

Now, one may assume that the molecular local softness
sm(r ) ) ({∂Fm(r )/∂µ})V and the molecular Fukui functionfm(r )
) ({∂Fm(r )/∂N})V may also be distributed in the fragments, that
is, sm(r ) ) ∑isi(r ), wheresi(r ) is the local softness of theith
fragment in the molecule andfm(r ) ) ∑ifi(r ). Thus, by recalling
that the density functional approach of Cedillo, Chattaraj, and
Parr was established through a truncated Taylor series expansion
that only kept terms up to second-order derivatives of the energy,
under the same assumption, one hassi(r ) ≈ si

0(r ) andsm(r ) )
∑isi(r ) ≈ spm

0 (r ). Therefore,

and the local softnesses may be expressed as

whereSm is the ground-state molecular global softness.
It is important to note that the integral offm(r ) over the whole

space is equal to 1, while the integral offi(r ) is Fi ≡ ∫ fi(r ) dr ,
so that∑iFi ) 1. The quantitiesFi can define the condensed
Fukui functions of the fragments in the molecule. Thus, since
the integral of the molecular local softness is equal to the
molecular global softness, the integral of theith fragment local
softness corresponds to the condensed local softness,Si ≡
∫ si(r ) dr , andSi ) SmFi, where∑iSi ) Sm. With eq 11, the
approximate last equality of eq 10 becomes

The comparison of eq 6, with the local assumptionwi(r , r ′) )
wi(r ′)δ(r - r ′), and eq 12 implies that

This relationship establishes that the molecular Fukui function
is distributed in the fragments in the same proportion as the
molecular electronic density. However, note that in the present
derivation one does not invoke the assumption of using the
distribution function that is employed in the neutral system for
the cases in which the molecule has net positive or negative
charge. Thus, the present demonstration provides support to the
use of a density-based partitioning scheme to determine other

∑iFi(r ) ) Fm(r ) (3)

∆Ωi ) Ni
0(µi - µi

0) - ∫Fi
0(r )ηi

0(r , r ′)∆Fi(r ′) dr ′ dr -

(1/2) ∫∆Fi(r )ηi
0(r , r ′)∆Fi(r ′) dr ′ dr (4)

∆Ωtot ) ∑i∆Ωi ) ∑i(Ωi - Ωi
0) ) ∑i(∆Ei - µi∆Ni) (5)

Fi(r ) ) ∫wi(r , r ′)Fm(r ′) dr ′ (6)

wi(r , r ′) ) ∫si
0(r , r ′′)h(r ′′, r ′) dr ′′ (7)

wi(r ) )
si

0(r )

spm
0 (r )

(8)

spm
0 ) ∑isi

0(r ) (9)

wi(r ) )
si

0(r )

spm
0 (r )

≈ si(r )

sm(r )
(10)

sm(r ) ) Sm fm(r ) and si(r ) ) Sm fi(r ) (11)

wi(r ) )
si

0(r )

spm
0 (r )

≈ si(r )

sm(r )
)

fi(r )

fm(r )
(12)

wi(r ) )
si

0(r )

spm
0 (r )

)
Fi(r )

Fm(r )
≈ si(r )

sm(r )
)

fi(r )

fm(r )
(13)
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fragment properties such as the softness or the Fukui function.26

The present procedure does not involve additional assumptions
to the ones already established for the density functional
approach, namely, the second-order truncation and the locality
of wi(r , r ′). The relation given by eq 13 is a consequence of
these two assumptions, and it requires knowledge of one of the
ratios to calculate the other ratios. Thus, the results for the
condensed Fukui functions reported in the literature for a wide
variety of molecules19-22 using wi

H(r ) ) {Fi
0(r )/Fpm

0 (r )}, as a
distribution function, can be supported by the present density
functional theory approach to molecular fragments.

Conclusions

Recently, Parr, Ayers, and Nalewajski15 have argued that,
although the concept of atoms in molecules is central to
chemistry, it is ambiguous, in the sense that there are multiple
ways to partition molecules into atoms which are consistent with
observed chemical trends and experimental data. However, while
some definitions may be useful in certain cases, there is no
unique partitioning that could be experimentally verified or
defined. Thus, they have concluded that the concept of atoms
in molecules, while highly useful, constitutes a noumenon in
the sense of Kant (“an object of purely rational apprehension;
specifically, with Kant, a nonempirical concept, or an object
knowable by the mind or intellect, not by the senses; specifically,
in Kantian philosophy, an object of purely intellectual intu-
ition”).

In this context, the result established for the distribution of
other properties, like the Fukui function or the local softness,
with the density-based distribution function provides support
for the calculation of these fragment properties in other density-
based partitioning schemes, particularly, to the Hirshfeld
stockholders partitioning, which leads to very reliable values
of the condensed Fukui function. In addition, this result is in
agreement with the work of Ayers, Morrison, and Roy,23 in the
sense that the same distribution function may be used for several
local properties.
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